
LINC2 FILTER Synthesis

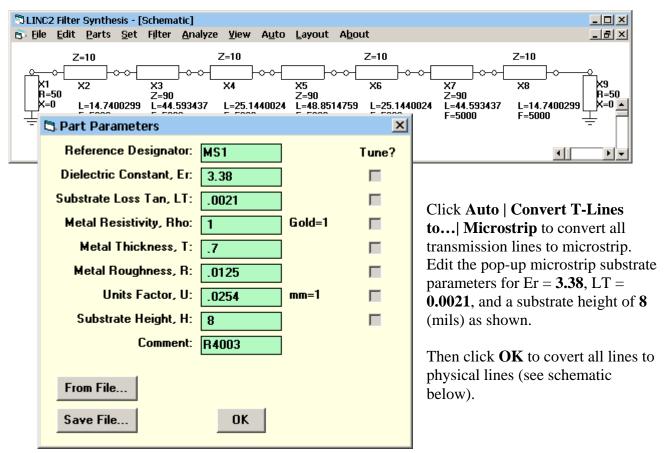
The LINC2 filter synthesis program is started by selecting **Filter Design** from the main LINC2 **Tools** menu as shown above.

The initial filter synthesis process usually generates an ideal electrical schematic. When the schematic (with ideal elements) is converted to a physical layout, non-ideal attributes are often introduced that alter the desired filter characteristics. EM simulation can help the designer understand these changes so they can be compensated for in the original design (such as a shift in the frequency specification).

The following example will demonstrate how a 7th order distributed Chebyshev lowpass filter (in microstrip) can be specified, synthesized, and exported to the Sonnet[®] EM simulator for analysis in a matter of minutes with only a few menu clicks and keystrokes.

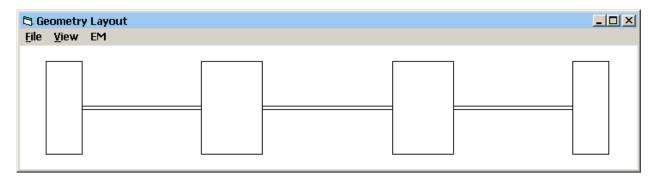
First, select **Distributed** (Single-ended) from the Filter menu:

	esign Speci	fications	×
[-Filter Param	neters	
	Topolog	gy Parameters Layout Other	
		Transmission Response	
		Compass	
		C Highpass	
		© Bandpass © Bandstop	
		C Butterworth	
		© Chebyshev	
		O Bessel	
		Synthesize Filter EXIT CANCEL	
		Click the Topology tab and Select Lowpass and Chebyshev .	

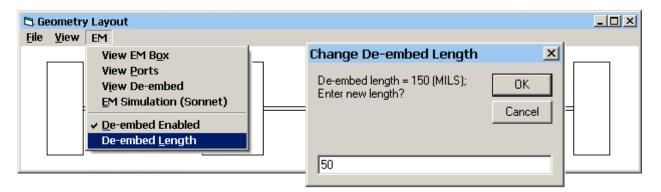

Click **Topology** and Select **Chebyshev Lowpass**.

Enter the detailed filter specifications:

Design Specif	ications			×					
Filter Parameters									
Topology Parameters Layout Other									
Filter Specifications									
	Cutoff Frequency	5000	MHz						
	Attenuation at Cutoff	3.0103	dB						
	Passband Ripple	0.150	dB						
	Filter Order	7							
	Source Impedance	50	Ohms						
	Synthesize Filter	EXIT	CEL						
Click the Parameters tab and fill in the filter specifications as shown (Cutoff									
Frequency = 5000, Passband Ripple = 0.15 , Filter Order = 7).									

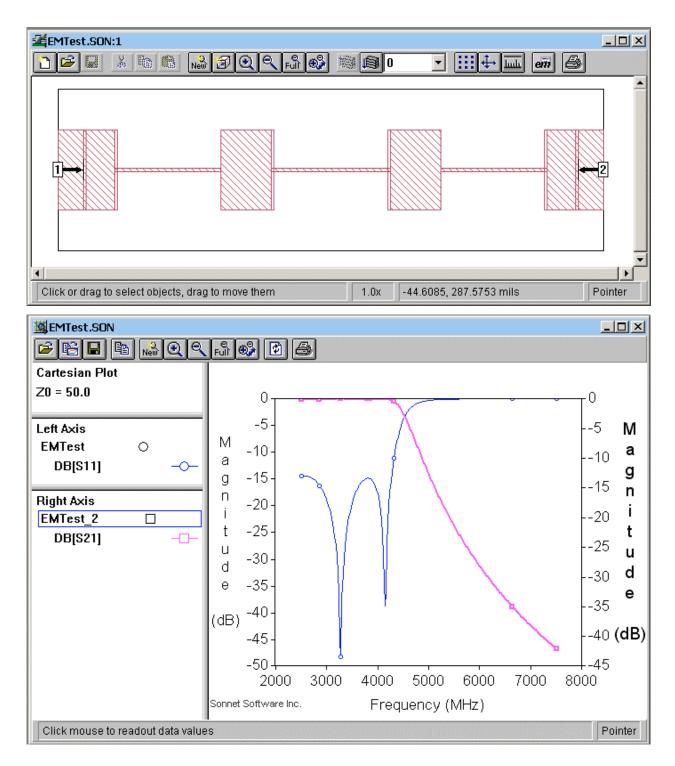

Filter Parameters Topology Parameters Layout Other Additional Specifications Series Element First, Minimum Capacitor Shunt Element First, Minimum Inductor TLine, Resonator Impedance: 50 Ohms TLine, Minimum Impedance: 90 Ohms 	esign Specifications X							
Additional Specifications Series Element First, Minimum Capacitor Shunt Element First, Minimum Inductor TLine, Resonator Impedance: 50 Ohms TLine, Minimum Impedance: 10 Ohms TLine, Maximum Impedance: 90 Ohms	Filter Parameters							
 Series Element First, Minimum Capacitor Shunt Element First, Minimum Inductor TLine, Resonator Impedance: 50 Ohms TLine, Minimum Impedance: 10 Ohms TLine, Maximum Impedance: 90 	Topology Parameters Layout Other							
 Shunt Element First, Minimum Inductor TLine, Resonator Impedance: 50 Dhms TLine, Minimum Impedance: 10 Ohms TLine, Maximum Impedance: 90 	Additional Specifications							
TLine, Resonator Impedance: 50 Ohms TLine, Minimum Impedance: 10 Ohms TLine, Maximum Impedance: 90 Ohms	Series Element First, Minimum Capacitor							
TLine, Minimum Impedance: 10 Ohms TLine, Maximum Impedance: 90 Ohms	Shunt Element First, Minimum Inductor							
TLine, Maximum Impedance: 90 Ohms	TLine, Resonator Impedance: 50 Ohms							
	TLine, Minimum Impedance: 10 Ohms							
	TLine, Maximum Impedance: 90 Ohms							
Synthesize Filter EXIT LANLEL	Synthesize Filter EXIT CANCEL							

Click the **Other** tab. Select **Shunt Element First** and change the TLine (transmission line) minimum and maximum impedances to 10 and 90 ohms respectively. The filter specifications are now complete. Click the **Synthesize Filter** button and **Exit** to see the filter schematic (below).



LINC2 Filter Synthesis - [Schematic] File Edit Parts Set Filter An	alyze <u>V</u> iew A <u>u</u> to	Layout About\LINC\FL	T_LP2EM_MS1.sch	_ 🗆 🗙 _ 🗗 🗙
W=143.78772124 W Q-Q- Q-Q- X1 ML12 R=50 W=5.1993956 X=0 H=8 H=8 H=8 L=54.70479453 L=185.492720	MLI3 19 H=8	₩=143.78772124 	W=143.78772124 	Substrate- Microstrip MS1 FIF=3.38 ×9 LT=.0021 R=50 Ro=1 ×=0 T=.7 3 R=.0125 U=.0254 H=8 R4003 <

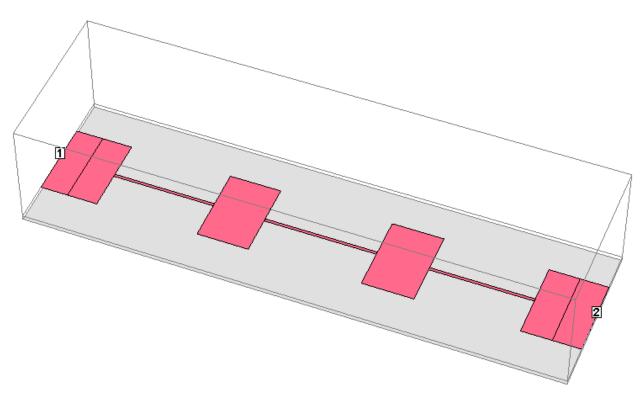
The resulting schematic is converted to all physical microstrip lines. Click **Layout** to see the layout geometry (below).



For this example, change the default de-embedding length from 150 mils to 50 mils by selecting **De-embed Length** from the EM menu as shown below. Enter 50 and click OK. Then select **EM Simulation (Sonnet)** from the EM menu.

When EM Simulation (Sonnet) is selected, the file EMTest.SON is created and automatically exported to the Sonnet[®] xgeom project editor ready for analysis. The EM box, metal and substrate layers and frequency parameters are already loaded. The layout in Sonnet[®] is shown below. Black arrows pointing inward from each port show the amount of de-embedding at the ports.

Simply select **Analyze** from the Sonnet[®] project menu to run the simulation. When the simulation is complete, select **Project** | **View Response** | **New Graph** to get the response plots shown below.



The plot of S21 shows that the filter response is lowpass with a cutoff frequency slightly ahead of the 5000 MHz design goal. The return loss (S11_dB) in the passband is 15 dB or greater.

The slight downshift in the frequency response can easily be compensated for by re-running the LINC2 synthesis again with a new frequency specification that is higher by approximately the same amount.

Optional:

Click **View** | **View 3D** from the Sonnet xgeom **View** menu to see the 3-D physical layout (below).

[Home]